Novel Gaussian Beam Method for the Rapid Analysis of Large Reflector Antennas
نویسندگان
چکیده
A relatively fast and simple method utilizing Gaussian beams (GBs) is developed which requires only a few seconds on a workstation to compute the near/far fields of electrically large reflector antennas when they are illuminated by a feed with a known radiation pattern. This GB technique is fast, because it completely avoids any numerical integration on the large reflector surface which is required in the conventional physical optics (PO) analysis of such antennas and which could take several hours on a workstation. Specifically, the known feed radiation field is represented by a set of relatively few, rotationally symmetric GBs that are launched radially out from the feed plane and with almost identical interbeam angular spacing. These GBs strike the reflector surface from where they are reflected, and also diffracted by the reflector edge; the expressions for the fields reflected and diffracted by the reflector illuminated with a general astigmatic incident GB from an arbitrary direction (but not close to grazing on the reflector) have been developed in [1] and utilized in this work. Numerical results are presented to illustrate the versatility, accuracy, and efficiency of this GB method when it is used for analyzing general offset parabolic reflectors with a single feed or an array feed, as well as for analyzing nonparabolic reflectors such as those described by ellipsoidal and even general shaped surfaces.
منابع مشابه
محاسبه سریع انتگرالهای تشعشعی با روش FFT جهت کاربرد در تحلیل آنتنهای بازتابنده شکلیافته
Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 ...
متن کاملQuasi-optical Beam Waveguide Analysis Using Gaussian Beam Expansion
For reflector antennas and mirrors with diameters < 50 ? Physical Optics (PO) and the Physical Theory of Diffraction (PTD) are very fast and accurate calculation methods for determining the scattered fields. In optics where the diameter of the mirrors >> 1000 ? ray tracing methods are sufficient means of determining the scattered fields. However, in the Quasi-optical range in between these wave...
متن کاملFDTD Analysis of Top-Hat Monopole Antennas Loaded with Radially Layered Dielectric
Top-hat monopole antennas loaded with radially layered dielectric are analyzed using the finite-difference time-domain (FDTD) method. Unlike the mode-matching method (MMM) (which was previously used for analyzing these antennas) the FDTD method enables us to study such structures accurately and easily. Using this method, results can be obtained in a wide frequency band by performing only one ti...
متن کاملDistorted Reflector Antennas: Radiation Pattern Sensitivity to the Surface Distortions
The high-frequency performance of the reflector antennas is mainly limited by the surface. It has been shown that distortions on different regions of the reflector surface can have different effects on the radiation performance. In other words, degradation of the radiation pattern due to the presence of surface distortions is sensitive to the location and behavior of the surface distortion prof...
متن کاملPhased Array Feeds for Low Noise Reflector Antennas
Phased array feeds offer the possibility of more efficient use of large radio astronomy reflector antennas by providing more closely spaced beams over a wide field of view and higher aperture efficiency in each beam than have been realized with horn feeds. Phased arrays have been used extensively in rapid scanning radars and shaped-beam satellite systems, but the array design criteria for low-n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001